

300 SMEs regarding impacts of unsustainable water use and wider community level benefits of better water stewardship.

and regionally through the SWICTH-Asia network by 2015.

hy we are here: o stop the degradation of the planet's natural environment and to build a futu which humans live in harmony with nature. ww.wwfpak.org info@wwf.org.pk

Training Manual on BWMPs in **Textile Sector of Pakistan**

Table of Contents

Introduction

Objective of the training Mode of training The textile sector in brief Textile sector BWMPs Textile sector business cases Case study

© WWF-Pakistan 2014

All rights reserved. No part of this publication may be reprinted without the prior written consent of WWF-Pakistan. All facts and figures presented in this manual are based on water audits conducted in partnership with Cleaner Production Institute in select industries at a certain point in time, they do not necessarily reflect the current water usage or net investment/savings in any of the mentioned production units.

Editing: Asma Ezdi

Designer: Nadia Aine

Photo Credits: Water Stewardship Programme / WWF-Pakistan

Introduction

City-wide Partnership for Sustainable Water Use and Water Stewardship in SMEs in Lahore, Pakistan (WSP)

City-wide Partnership for Sustainable Water Use and Water Stewardship in SMEs in Lahore, Pakistan (WSP) project is a three-year (2013 to 2015) capacity building project under SWITCH-Asia and funded by the European Union. SWITCH-Asia is a regional environmental programme in line with the European Commission (EC) Regional Paper for Assistance to Asia (2007-2013). The aim of this programme is to promote Sustainable Consumption and Production (SCP) among Small and Medium Enterprises (SMEs) and consumer groups in Asia.

The WSP project is being executed by a consortium of three organizations i.e. WWF-Pakistan, WWF-UK and Cleaner Production Institute (CPI). The Lahore Chamber of Commerce and Industry (LCCI) and Punjab Small Industries Corporation (PSIC) are part of the project as associates.

The project targets SMEs in Punjab in four sectors, i.e. textile processing, leather tanneries, pulp and paper and sugar. It aims to minimize the use of natural resources, toxic materials and promote a reduction in emissions, waste and pollutants over the life cycle of industrial production with a focus on effective water stewardship.

The overall objective of the project is that "by 2025 water efficient production and consumption predominates as best practice in Pakistan's major industrial cities as part of a broad engagement of business in water management, contributing to improved environmental sustainability and poverty reduction within the context of sustainable development."

The specific objectives of the project are to:

Reduce water consumption by at least 15 per cent and pollution load by 15 per cent in 25 water intensive SMEs in Lahore by 2015.

Increase capacity of 75 cross sectoral water intensive SMEs to adopt or support more sustainable water management practices by 2015.

Enhance understanding and knowledge of a further 300 SMEs regarding impacts of unsustainable water use and wider community level benefits of better water stewardship.

Develop a multi-stakeholder city-wide partnership, comprising SMEs, public authorities, River Ravi Commission, supporting institutions and Multi-national Corporations (MNCs) by 2015.

Share the lessons learnt with policymakers and regionally through the SWICTH-Asia network by 2015.

Objective of the Training

The objective of this training is to highlight practical and easy to implement Best Water Management Practices (BWMPs) to technical professionals of the textile sector in Pakistan. The trainees will then be expected to implement these BWMPs in their productions units, monitor performance and demonstrate outcomes to others to follow the same path.

The performance data and business case of these BWMPs will also be presented in this training so that professionals can evaluate their practicability and discuss their implementation with relevant resource persons.

Mode of Training

The training will be conducted through a multimedia presentation after which there will be a detailed discussion on each BWMP with the audience. This manual will serve as reference material for the training.

The Textile Sector in Brief

Textile is the largest industrial sector of Pakistan with respect to production, export and labour force employment. Pakistan is the eighth largest exporter of textile products among Asian countries and 12th globally. At present the textile sector's established capacities is 1,550 million kilograms of yarn spinning, 4,368 million square metres of fabric weaving and 4,000 million square metres of fabric finishing. It contributes 8.5 per cent to the country's GDP and 52 per cent in terms of export. The sector employs 38 per cent of manpower in manufacturing and accounts for 31 per cent of total investment in the country.

Pakistan's major textile export products include cotton fabrics, knitwear (hosiery), cotton yarn, bed wares, readymade garments, towels, synthetic textile and raw cotton.

The textile processing sub-sector provides the greatest value addition to the textile sector. In Punjab and Sindh, the number of textile processing units is estimated to be around 1,545. Out of these units, about 840 are woven processing units and the rest are knitwear processing (hosiery) units. These units carry out various textile processes, including pretreatment, dyeing, printing and finishing.

The number of textile processing units in Punjab is estimated to be around 1,395. Out of 1,395 units, about 690 are woven textile processing units and the rest are knitwear processing (hosiery) units. The estimated total production of the textile processing sector in Punjab is 9,500 million metres/year for woven textiles and 2,200 million kg/year for knitwear textiles.

Textile Sector Issues Related with Water Management

The textile sector requires large amounts of water, steam and electricity. As a result, the main environmental stress associated with this sector is water and energy consumption as well as emissions to water.

Best Water Management Practices (BWMPs) of the textile sector are:

- i)Water management
- ii)Energy conservation (electrical and thermal)
- iii)Wastewater pollution reduction

Water Management

Water is an important utility in the wet processing of textile units. Most production units, especially in Punjab, use groundwater whereas, in Karachi, most units buy water through tankers due to scarcity and difficulty of tapping. Therefore, water obtained is generally hard, and requires softening treatment prior to its use in processes or boilers. The most prevalent technique of water softening in the Punjab textile processing units is cat-ion exchange.

In general, groundwater quality in the Lahore-Gujranwala region is better as far as its dissolved solids contents are concerned, whereas the Faisalabad region face water quality issues due to the salty nature of groundwater. High dissolved solids in water result in higher chemical consumption and deteriorated fabric quality.

In Punjab, water is cheap and an easily accessible commodity, therefore production units do not give any serious consideration to its use and conservation. Most units, except those in Karachi, are not aware about their water consumption. Water consumption varies from unit to unit, largely depending on processes, type of machines, production capacity, and water use practices.

Unnecessary wastage of water is a regular feature of the industry. The main reason for this attitude is its abundant availability and easy accessibility. Water is considered a cheap and invaluable commodity and workers and management is not concerned about its excessive use in different processes, especially in co-current washing, where water is continuously added at the one end of the machine and discharged from the other. This attitude is also reflected on the production floor where there is no monitoring and record keeping of water consumption at different process levels. Water is continuously running and wasted even when machines have stopped. Water hoses, used for floor and equipment washing, are mostly seen lying on the floor with water continuously running. A substantial amount of water is also used in associated activities such as floor and equipment washings.

Management and production staff do not maintain any record of water consumption therefore total water consumption of the plant is not known. Clean water streams are wasted and cooling water from different machines (a clean stream), is also wasted. Reject water from reverse osmosis and softener plants is also not utilized as it is of poor quality. Process washes are not optimized and water is unnecessarily wasted from water hoses and machines. Co-current wash boxes arrangement results into water wastage.

Energy Conservation (Electrical & Thermal)

Energy Issues

Pakistan faces a severe energy crisis that is a threat to export-oriented tanneries. In recent years, textile units have had to deal with a serious power crisis, which has caused million of rupees worth of losses annually, especially during peak seasons which are normally from December to July.

Higher production costs resulting from a continuous rise in the energy costs is a major concern for the textile industry. Several in-house energy issues are increasing production costs as well. These issues, when rectified, can reduce overall energy costs between 5 to 30 per cent depending on the size of a unit and nature of energy issues in it.

Lack of Energy Monitoring

Energy monitoring is the first step in energy management. Due to a lack of awareness about energy conservation and its benefits, the management of tanneries do not take action to control energy losses. There are a number of areas where energy monitoring is not carried out and no temperature indicators or steam control valves are installed. Workers keep injecting steam in baths to heat water, even after the required temperature has been attaining. Since there is no temperature indication or automatic shut off valves in most machines, temperature is attainet on the basis of visual observations. There is no monitoring of natural gas consumption for individual machines like boiler, stenters or dryers.

Electricity Conservation

Electricity is another important utility in textile mills. Mostly large sized mills generate their own electricity as government supply is not reliable with frequent interruptions. Almost all small sized units and a few medium sized units use government electricity connections as their primary source and diesel generators as a backup facility.

Electricity consumption varies from unit to unit and largely depends on the number and size of machines in operations. Electricity consumption also depends on the age and state of the machines being used in tanneries. Major BWMPs related electrical energy issues are associated with electrical motors attached with water pumps and turbines.

Electric motors are the major consumer of electricity in any textile production unit and more than 90 per cent of total electricity is consumed by these motors. The running cost of motors is the most important factor contributing up to 95 per cent to the cost in the motor life cycle.

Motors are categorized on the basis of their efficiency i.e. Class I, Class II and Class III motors. Efficiency Class III motors, also called standard motors, consume more energy as compared to Class II or Class I motors. In older textile mills, motors with efficiency level Class-III which are mostly rewound are present, which causes considerable energy losses. There is also an issue of excessive burning in motors due to ineffective or lack of preventive maintenance and motor safeties. On the other hand in comparatively newer mills, installed motors have efficiency Class-II particularly in those machines and standard motors which are commonly used with pumps and fans.

Motors mismatched to their load (over and under-sized motors), motor burning and frequent rewinding and use of substandard rewinding material cause loss of efficiency. It is a fact that efficiency of the motor is decreased by 2-5 per cent when burned. If rewinding is not carried out properly, efficiency loss can be much more. Inefficient operation of motor driven equipments is also in practice. Throttling in circulation pumps of dyeing machines and water pumps, bypass control in therm oil pump, over speeds of circulation fans and damper control are common examples of inefficient use of machines.

Thermal

Fuels

Fuel is used in the textile industry as a direct heat source or for the generation of steam and electricity and natural gas is an important source of energy for the textile sector. However, due to current shortages of natural gas in the country, textile mills rely on alternative fuels such as coal, biomass (rice husk, wood, wheat straw, bagasse), LPG etc. Fuels are mostly utilized in generators, boilers, singeing machines, therm oil heaters, and dryers. For large and medium sized units, natural gas adequately fulfills energy demands as electricity is also generated from natural gas generators. Electricity generation through diesel-based generators is expensive and units are shifting to gas-based generators. Coal and biomass are also being evaluated for electricity generation due to gas shortages.

Steam

Steam is the main heating source in processing, which is produced through steam boilers. Boilers usually run on natural gas, coal or biomass. In some industries, waste heat recovery boilers are also installed which generate steam using the flue gases heat of power generators.

Issues with thermal energy conservation:

Boiler and Process Water Treatment

Textile processing is a water intensive industry. Daily huge quantities of water are consumed in various processes and for steam generation. The use of water depends upon its characteristic. The water in Punjab has an average total hardness value of 40-230 mg/lit as CaCO3 and Total Dissolved Solids (TDS) contents of 260-560 mg/lit. However, these values largely depend on groundwater depth and regional groundwater characteristics. If hard water is used in boiler and production processes it affects the performance of the boiler and production process in the following ways:

For boiler

Scaling of boiler heating surface Excessive blow down Reduced boiler life Extra fuel consumption

In production processes

Chemical consumption is increased Quality of the dyed and bleached fabric is affected

Steam Leaks

Steam leaks are significant and highly visible indicators of energy wastage. Based on energy audits, almost all production units have steam leakage problems. The nature of these leaks varies from unit to unit. Steam leaks occur due to damaged fittings, damaged pipes, glands of valves and faulty steam traps. In textile units, workers generally do not pay attention to steam leaks. The magnitude of steam wastage from damaged fittings ranges from 3 to 15 kg/hour.

Condensate Wastages

Steam is either directly added to water or indirectly through coils or jackets. Direct injection of steam is irrecoverable as it becomes part of hot water. On the other hand, indirect steam is condensed after heat transfer to other medium of

In textile units, the direct steam injection ratio varies from 40 to 70 per cent of total steam consumption as older machines are designed on direct steam injection while new machines have more options of indirect injection. The steam condensate recovery and reuse profile varies in textile units as well as those units with older steam system designs have poor steam condensate recovery. Poor or no steam condensate recovery occurs due to one of the following reasons:

traps

Poor design of recovery system

No provision for steam condensate recovery system in the initial designing

Faulty condensate recovery pump

Energy Wastage in Hot Wastewater

Hot wastewater from various steps of pre-treatment and dyeing is wasted without heat recovery. This water usually ranges in temperature from 60 to 90°C and contains a significant amount of energy which can be recovered to heat other streams through heat exchangers.

Wastewater Pollution

Textile processing is a water intensive industry where water is used as to carry a variety of chemicals to fabric and for washing purposes. Consequently, textile processing units generate various types of wastewater, differing in magnitude and quality.

In general, textile wastewaters are highly coloured, have high BOD and COD values, high total dissolved solids and high temperature. The main sources of water pollution are natural impurities extracted from fabric which is being processed and use of chemicals in processing. The nature of textile wastewater largely depends on in-house operations and the degree to which water and chemicals are preserved. Table 1.0 shows wastewater sources and quality in a typical textile mill.

Condensate lines are lifted against gravity, exerting back pressure on the traps and thus operators by-pass steam

Table 1.0: Wastewater Sources and Quality in Textile Wet Processing

Process & Source	Wastewater	Quality
Singeing	Continuous discharge of cooling water	Temperature
Desizing		
Desizing Bath	Periodic discharge of exhausted bath	Temperature, BOD, COD, TSS, TDS,
Hot Washings	Periodic discharge of exhausted bath, wash water discharge	Acidic (Low pH)
Cold Washings	Wash water discharge	
Scouring		
Scouring Bath	Periodic discharge of exhausted bath	Temperature, BOD, COD,
Hot Washing	Wash water discharge	TSS, TDS, O&G, Surfactants,
Cold Washing	Wash water discharge	Alkaline (High pH)
Bleaching		
Bleaching Bath	Periodic discharge of exhausted bath	Temperature
Hot Washings	Wash water discharge	TDS, Surfactants,
Cold Washings	Wash water discharge	Alkaline (High pH)
Neutralization		
Neutralization Bath	Periodic discharge of exhausted bath	Temperature
Cold Washings	Wash water discharge	Acidic (Low pH)
Mercerization		
Mercerization Bath	Periodic discharge of exhausted bath	Temperature
Hot Washings	Wash water discharge	TSS, TDS
Cold Washings	Wash water discharge	Alkaline (High pH)
Dyeing		
Dye Bath	Periodic discharge of exhausted bath	Temperature, Color,
Softening Bath	Periodic discharge of exhausted bath (optional)	BOD, COD,
Oxidation Bath	Periodic discharge of bath (for sulfur and vat dyes)	TSS, TDS, Surfactants
Reduction Bath	Periodic discharge of bath (for vat dyes)	Chromium, Copper
Soaping Bath	Periodic discharge of exhausted bath (optional)	COD, TDS, TSS, Surfactants
Neutralization Bath	Periodic discharge of exhausted bath (optional)	COD, TDS, TSS, pH
Hot Washings Wash water discharge (all dyes except pigments)		BOD, COD, TDS, TSS, pH
Cold Washings	Wash water discharge (all dyes except pigments)	BOD, COD, TDS, TSS, pH
Printing		
Screen Section	Screen development and stripping wastewater	COD, O&G, Chromium
Color Kitchen	Batch vessels and floor washing water	Color, COD, TSS, TDS, NH ₃

	Continuous discharge of blanket washing water	Chromium
Fabric Washing	Wash water discharge (for fabric printed with dyes)	Color, COD, TDS, Surfactant
Finishing		
Stenter Finishing	Periodic discharge of exhausted bath	Temperature, COD, TDS
Miscellaneous		
Water Softening	Softening media regeneration wastewater	TDS, Salts
Boiler Operation	Periodic discharge of boiler blow-down water	Temperature, TDS
Laboratory	Wastewater from laboratory testing operations	Color, COD, TDS
Office Use & Miscellaneous	Wastewater from office use, floor washings and cleaning operations	BOD, COD TSS, O&G

Wastewater Quantity

The quantity of wastewater varies from unit to unit and largely depends on the extent of value addition to raw fabric. Type of technology is also a determinant, as some old and obsolete systems consume comparatively more water than their new counterparts for the same degree of finished qualities for a particular product.

Unit process wastewater generation rates, processing units are presented in table 2.0.

Table 2.0: Unit Process Wastewater Generation Rates

Product	Unit Process Wastewater Generation Rates (litre/kg)
Bleached Fabric	100-130
Dyed Fabric	120-320
Printed Fabric	80-170

Source: ICTP Textile Programme

Wastewater Characteristics

Characteristics of wastewater vary from unit to unit depending on the technology in use and in-house practices. Table 3.0 states estimated ranges for each environmental parameter with the help of data collected during environmental audits. These values were further refined with the help of literature survey.

Unit process wastewater generation rates, based on an analysis of flow monitoring data of local textile

Table 3.0: Characteristics of Combined Woven Textile Processing Wastewater (Composite)

Parameter	Unit	Type of Industry			NEQS
			Punjab		[1]
		Dyeing	Dyeing-Printing	All Types	
рН		8.3-11.7	6.3-12.0	8-12	6-9
Biochemical Oxygen Demand (BOD)	(mg/l)	110-1,070	300-728	120-1100	80
Chemical Oxygen Demand (COD)	(mg/l)	365-1,200	880-1,820	500-2500	150
Total Suspended Solids (TSS)	(mg/l)	50-1335	82-450	50-800	200
Oil and Grease (O&G)	(mg/l)	17-32	11-40	10-80	10
Total Dissolved Solids- Incremental (TDS-I)	(mg/l)	1 <i>,</i> 280- 1,540	1,000-1,900	3,400-8,000	3,500
Chloride-Incremental (CI-I)	(mg/l)	400-750	90-1,100	-	1,000
Chromium (Cr)	(mg/l)	0.5-3.6	1.5-12.6	-	1.0
Copper (Cu)	(mg/l)	0.4-0.5	0.10	-	1.0

[1] NEQS for disposal to Inland Waters Source: PISD

Unit Process Wastewater Pollution Loads

Unit wastewater pollution load is the pollution load per unit of the product. For textile processing, it is commonly reported as grams of the pollutant per kilogram of the fabric processed. Pollution loads of various process streams are mentioned in table 4.0.

Table 4.0: Unit Wastewater Pollution Loads

Devenuetor	Unit Pollution Loads (g/kg)			
Parameter	Bleached	Dyed	Printed	
Biochemical Oxygen Demand (BOD)	35-60	50-90	40-70	
Chemical Oxygen Demand (COD)	120	120-180	90-140	
Total Suspended Solids (TSS)	30-60	30-85	30-50	
Oil and Grease (O&G)	3-7	2-8	1-3	
Incremental TDS	250-300	130-400	1 30-350	
Incremental CI	90-130	90-130	130	
Chromium (Cr)	-	0.2-1.0	0.4-1.8	

Source: ICPT-Textile Programme

Variations in the unit pollution loads are mainly due to differences in the type and quality of grey fabric, variation in chemicals used and process recipes.

Impacts Associated with Wastewater

All wastewater generated from a textile unit may have at least two disposal routes, either it is discharged into larger water bodies like water courses, canals, lakes, rivers or the sea; or to groundwater reservoirs. Following one of these

Table 5.0: Impacts of Wastewater Pollutants

Value of pH	Growth inhibition under highly acidic
	Corrosion of water value
	Malfunctioning an under highly acidic
Temperature	Depletion of disso growth inhibition o
	Malfunctioning of
Color	Reduced light p photosynthesis
	Aesth <i>e</i> tic nuisance
Organic Pollutants	Depletion of disso necessary to maint
Suspended Solids	Sedimentation in t which aquatic life o
	Localized depletion
	Reduced light p photosynthesis
	Aesthetic nuisance
Oil & Grease	Reduced re-aeration and consequent de
	Reduced light p photosynthesis.
	Aesthetic nuisance
Chromium	Acute renal tubula
	Gastric irritations c

Chemical Conservation

Textile processing is a chemical intensive industry where different types of chemicals such as acids (acetic acid, formic acid), alkalis (sodium hydroxide, potassium hydroxide, sodium carbonate), bleaching agents (hydrogen peroxide, sodium hypochlorite, sodium chlorite), dyes (direct, disperse, pigment, vat), salts (sodium chloride), size (starch, PVA), stabilizers (sodium silicate, sodium nitrate, organic stabilizers), surfactants, auxiliary finishes (fire retardant, softeners) are used. The fate of these chemicals varies, ranging from 100 per cent retention in fabrics to 100 per cent discharge with effluents. Developed countries have adopted safer chemicals in their processes, whereas in developing countries such as Pakistan some mills still use harmful chemicals in their industrial processes. Impacts due to use of these chemicals are as follows:

Sodium hypochlorite is used as a bleaching agent. Its application leads to the formation of chlorinated hydrocarbons such as carcinogenic trichloromethane (chloroform).

Wastewater generated from sulfur dyeing contains sulfides which are toxic to aquatic organisms. Sulfide anions forms hydrogen sulfide gas under acidic conditions and causes problems of odour and corrosion.

Sodium hydrosulfite is used in vat dyeing and is less critical than sodium sulfide. During the dyeing process,

routes, wastewater may also cause some land contamination. Impacts of wastewater generated from textile processing

of	ba	cterial	species	(responsible	for	removing	organic	pollution)
a	nd	al ka lin	e conditi	ons				

er carrying systems and structures with acidic wastewaters of low pH

nd impairment of certain physico-chemical treatment processes c and alkaline conditions

olved oxygen (DO) levels in receiving water body, resulting in of aquatic life

wastewater treatment systems, under high temperatures

penetration in natural waters and consequent reduction in

olved oxygen (DO) levels in receiving water body, below limits tain aquatic life (4-5 mg/l).

the bottom of water bodies covers natural fauna and flora on depends.

n of dissolved oxygen in the bottom layers of waters bodies.

penetration in natural waters and consequent reduction in

ion in natural surface bodies due to floating oil and grease film epletion in dissolved oxygen levels

penetration in natural waters and consequent reduction in

ar necrosis and liver necrosis in humans, at higher doses

and ulcers in humans, at lower doses

sodium hydrosulfite is converted into sulfite, which is toxic for fish and bacteria and in some cases is further oxidized into sulfates. Sulfates also cause corrosion of concrete pipes and may be reduced under anaerobic conditions into hydrogen sulfide.

During dyeing, dichromate is used with vat and sulfur dyes as an oxidizing agent and can result in the formation of chromium VI, which is acutely toxic and is a carcinogenic agent.

Salts are employed in dyeing to facilitate exhaustion (transfer of dye from solution to fabric surface) of ionic dyes, especially anionic dyes such as direct and reactive dyes on cotton. Mostly, common salt is used which is cheap but is quite corrosive.

Many surfactants raise environmental concerns due to poor biodegradability and toxicity. These include alkylphenol ethoxylates (APEO) and nonylphenol ethoxylates (NPE) which are often contained in detergents and many other auxiliaries (e.g. dispersing agents, emulsifiers). Alkylphenol ethoxylates are themselves believed to be endocrine disruptors and known to cause feminization of male fish. More importantly, however, they produce compounds which are believed to be many times more potent than the parent compounds. The most potent of these are octyl and nonylphenol. Nonylphenol is listed as a priority hazardous substance under the EC Water Framework Directive, which means that any discharge, needs to be phased out.

Textile mills do not store chemicals safely; no containment arrangement is in place to collect leaks or spills. There is also no management practice where older chemicals are used first to avoid their spoilage. As a result, spills and leaks contribute to wastewater and soil pollution.

Workers generally add chemicals in process vessels and chemical preparation tanks without precise measurement, based on estimation. They pour chemicals solely on their judgment or use containers of different types and sizes such as plastic drums and jugs to do so. These practices result in over dozing of chemicals which increases economic loss and wastewater pollution.

Chemical Recovery

Large quantity of caustic soda is wasted in the mercerization process wash waters. These washes contain about 5 per cent caustic soda which contributes to losses of million of rupees but also contributes to wastewater pollution. Caustic soda can be recovered through a caustic recovery plant.

Specific Utility Consumption

Based on the findings of energy and environmental audits, the typical utility consumption for every kilogram of fabric processed is given in table 6.0.

Table 6.0: Specific Utilities Consumption in Textile Industries

Utilities	Consumption per kg Fabric Processed			
Otintics	Punjab	Sindh		
Water (litres)	70 - 400	25-140		
Natural Gas (m ³)	0.17 – 1.88	0.15-1.70		
Electricity (kWh)	0.32 – 1.95	0.15-2.30		
Steam (kg)	4 - 27	4-13		

Source: PISD

Textile Sector BWMPs

BWMP-01	Conduct training of workers
Category	Water management, energy
Description	
	f workers and management of Experts, trainers and consulto
Investment	PKR 200,000-300,000 dep
Benefits	
Trained human re organization.	source is beneficial in reduc
	Installation of water flow m
BWMP-02	
Category	Water management
Description	
Installation of wate	nt is not possible without er flow meters in water cons on) for water management.
Investment	PKR 10,000-200,000
Benefits	
	000/year, payback in 11 mor nt through monitoring. Wa lic load.
BWMP-03	Leakage control, maintenar
Category	Water management, energy
Description	

Category Water management, et		
Description		
Improper maintenance or lack of preventive pollution generation, untidiness and safety h		
Investment PKR 10,000-100,000		
Benefits		

PKR 20,000-200,000/year, payback in six months. Preventive maintenance results in resource management, pollution reduction and safety for workers.

BWMP-04	Reuse of cooling water		
Category	Water management		
Description			
Collection and reu caustic recovery pla	se of cooling water from sing ant etc.		
Investment	PKR 15,000-100,000		
Benefits			
PKR 30,000-200,000/year, payback in six mo			

14

rs and management

gy conservation, pollution reduction

on water conservation, energy efficiency and pollution tants can be hired to conduct these trainings.

pending on the size of the organization and extent of trainings.

ucing resource waste and contribute in the profitability of the

eter

monitoring of water consumption and setting benchmarks. suming areas is needed to determine water consumption and

onth s.

ater management results in reducing chemicals, energy and

ance of pipelines and piping improvement y conservation, pollution reduction

maintenance result in leakages which cause resource wastage, ard in occupational areas.

geing, chillers, compressors, therm oil heaters, cooling drums,

onths.

BWMP-05	BWMP-05 Use of reduced sized diameter water hoses		
Category	Water management		
Description			
	large sized diameters are used on production floors which result in large quantities of r consumption and wastage. Management should use appropriately sized water hoses in		
Investment	PKR 20,000-100,000		
Benefits			
PKR 30,000-150,000/year, payback in eight months.			

BWMP-06	Reuse of reverse osmosis (RO) reject water
Category	Water management
Description	
RO reject water is high in TDS which is generally discarded. This is poor quality water which can be used in places where high quality water is not required. Examples can be toilets, for floor and vessel washing, water showering in wet scrubbers etc.	
Investment	PKR 30,000-60,000
Benefits	
PKR 60,000-120),000/year , payback in six months.

BWMP-07 Reuse of wastewater as showering water Category Water management Description Water showering is carried out in wet scrubbers or cyclones attached with solid fuel boilers in production units. Wastewater, which is less polluted, can be used as an alternate for showering water in these scrubbers and cyclones. PKR 25,000-100,000 Investment Benefits PKR 30,000-120,000/year, payback in 10 months.

BWMP-08	Control of floor and other washings	
Category	Water management	
Description		
Ů,	use water liberally to wash floor. Mill management should take appropriate control water consumption at washing points.	
Investment	PKR 10,000-50,000	
Benefits		
PKR 12,000-60,00	00/year, payback in 10 months.	

BWMP-09	Installation of water trigger nozzles in water hoses
Category	Water management
Description	
Workers consume	I large quantities of water to wash floors and other vessels and drums using water hoses.
Workers consume Often water hoses	large quantities of water to wash floors and other vessels and drums using water hoses. are kept running and thrown on floors thus wasting large quantities of water unnecessarily. should be equipped with water trigger nozzles so that controlled water is utilized and waste
Workers consume Often water hoses These water hoses	are kept running and thrown on floors thus wasting large quantities of water unnecessarily.
Workers consume Often water hoses These water hoses avoided.	are kept running and thrown on floors thus wasting large quantities of water unnecessarily. should be equipped with water trigger nozzles so that controlled water is utilized and waste

BWMP-10	Installation of automatic lev
Category	Water management
Description	
mechanism to turn	n units, water is wasted as it of off water pumps or turbines ntrol switches so that water tu
Investment	PKR 10,000-50,000
Benefits	
PKR 11,000-55,00)0/year, payback in 11 mont
BWMP-11	Implementation of water sh
Category	Water management
Description	
the solution chamb fabric instead of i reduced water con	
Investment	PKR 5,000-50,000
Benefits PKR 6,000-60,000)/year, payback in 10 month
BWMP-12	Dry cleaning of floors
Category	Water management, polluti
Description	
of wastewater. Inste	of chemicals on floors should ead floors should be dry clea e water consumption and pol
Investment	PKR 5,000-10,000
Benefits	
PKR 6,000-11,00	0/year, payback in 11 month
BWMP-13	Reuse of process washes of
Category	Water management
Description	5
-	y, washing water of one prod
	bleaching and scouring was
Investment	PKR 20,000-100,000
Benefits	
PKR 25,000-125,	000/year, payback in 10 mo

Textile Sector Training Manual

evel control switches in water storage tanks

overflows from water storage tanks since there is no when tanks are full. These tanks should be equipped with urbines switch off and restart when the water level drops.

ths.

howering on fabric in jiggers and rope washing machine

gger and rope washing machines, water is directly applied into water for washing. If water is applied in the form of showers on ution chambers, it will result in improved fabric washing and

tion reduction

Id not be washed with water as it increases the pollution load aned with cloths, saw dust or any other solid material. This llution.

f one process into other processes

ocess can be used for other processes to reduce water shes can be reused as desizing washes.

onth s.

BWMP-14	Reuse of soaper machine wastewater
Category	Water management
Description	
Soaper wastewater contains some soap content and can be used for washing purposes such as washing pigments drum and cleaning the colour kitchen floor. Pigment drums and colour kitchen floor should be first washed with soaper wastewater and then with clean water.	

Investment	PKR 50,000-100,000
Benefits	
PKR 60,000-120,0	000/year, payback in 10 months.

BWMP-15	Synchronizing of blanket washing
Category	Water management
Description	
It has been observed that blanket washing continues even when the printing machine is not in operation, which results in wastage of water. Blanket washing should be synchronized with the movement of the printing machine.	
Investment	PKR 15,000-50,000
Benefits	

PKR 25,000-85,000/year, payback in seven months.

BWMP-16	Installation of temperature and pressure gauges in process vessels		
Category	Energy conservation		
Description			
	Generally when temperature and pressure gauges are not installed in process vessels and pipelines, energy is unnecessarily used to heat water and other contents.		
Investment	PKR 5,000-50,000		
Benefits			
PKR 6,000-60,000/year, payback 10 months			

BWMP-17	Conversion of machines from co-current to counter current mode
Category	Water management and energy conservation
Description	
continuous ranges	washing, water flows in the opposite direction to the fabric. This technique is used all of washing and rinsing in the textile industry. Counter-current washing can be applied at cour washers, mercerizing washers, bleach washers, dye ranges, and print house soaper
Investment	PKR 10,000-75,000
Benefits	
PKR 12,000-90,00	00/year, payback in 10 months.

BWMP-18	Performance monitoring of e
Category	Energy conservation
Description	
evaluated. Manage	l parameters of motors are no ement should use energy analy ce. In case motors don't operc
Investment	PKR 50,000-300,000 (energ
Benefits	
PKR 75,000-450,0)00/year, payback in eight mc
BWMP-19	Use of high quality copper w
Category	Energy conservation
Description	
	r wire is generally used to rew adity copper wires for rewindin
Investment	PKR 50,000-200,000
Benefits	
PKR 55,000-220,	000/year, payback in 11 mor
-	
BWMP-20	Record keeping of rewound
BWMP-20 Category	Record keeping of rewound Energy conservation
Category Description Motor performance	
Category Description Motor performance evaluated after rew	Energy conservation e records should be maintaine
Category Description Motor performance evaluated after rew replaced.	Energy conservation e records should be maintaine rinding. In case rewinding cau
Category Description Motor performance evaluated after rew replaced. Investment Benefits	Energy conservation e records should be maintaine rinding. In case rewinding cau
Category Description Motor performance evaluated after rew replaced. Investment Benefits	Energy conservation e records should be maintaine vinding. In case rewinding cau PKR 100,000-200,000 (mot
Category Description Motor performance evaluated after rew replaced. Investment Benefits	Energy conservation e records should be maintaine vinding. In case rewinding cau PKR 100,000-200,000 (mot
Category Description Motor performance evaluated after rew replaced. Investment Benefits PKR 120,000-240	Energy conservation e records should be maintaine vinding. In case rewinding cau PKR 100,000-200,000 (mot ,000/year, payback in 10 mor
Category Description Motor performance evaluated after rew replaced. Investment Benefits PKR 120,000-240 BWMP-21	Energy conservation e records should be maintaine rinding. In case rewinding cau PKR 100,000-200,000 (mot ,000/year, payback in 10 mor Reuse of steam conden <i>s</i> ate
Category Description Motor performance evaluated after rew replaced. Investment Benefits PKR 120,000-240 BWMP-21 Category Description Some industries wo intensive water stree	Energy conservation e records should be maintaine rinding. In case rewinding cau PKR 100,000-200,000 (mot ,000/year, payback in 10 mor Reuse of steam conden <i>s</i> ate
Category Description Motor performance evaluated after rew replaced. Investment Benefits PKR 120,000-240 BWMP-21 Category Description Some industries wo intensive water stree	Energy conservation e records should be maintaine vinding. In case rewinding cau PKR 100,000-200,000 (mot ,000/year, payback in 10 mor Reuse of steam condensate Water management, energy uste steam condensate instead cam whose wastage results in s

Benefits

Textile Sector Training Manual

electric motors

ot monitored and consequently their performance is not alyzer, regularly monitor electrical parameters and evaluate erate as per required parameters, they should be rectified or

rgy analyzer cost)

onths.

wire to rewind motors

wind motors which affect motor performance. Management ing.

nth s.

motors

ed and each motor load reading should be recorded and uses excessive current consumption, motors should be

otors replacement)

on ths.

conservation

d of using it as boiler feed water. This is a clean and energy substantial monetary loss. This stream should therefore be ater.

PKR 625,000-1,200,000/year, payback in two months.

	BWMP-22	Installation of heat exchangers on hot wastewater streams
	Category	Energy conservation
	Description	
e e	Heat energy can be recovered from hot wastewater streams originating from machines by installing heat exchangers between wastewater and freshwater used for different washing processes. The capacity of the heat exchanger will vary with the discharge of the machine. Increase in temperature should be in the range of 30 to 40°C.	
	Investment	PKR 500,000-750,000
	Benefits	

PKR 500,000-750,000/year, payback in 12 months.

BWMP-23	Boiler blow down after TDS monitoring	
Category	Energy conservation	
Description		
Blow down occurs in a boiler to manage TDS in it. Generally boiler operators conduct blow down at fixed set intervals without measuring the TDS of boiler water. Therefore, unnecessary blow downs are conducted and energy is. Blow down should always be conducted after measuring TDS.		
Investment	PKR 10,000-20,000	
Benefits		
PKR 30,000-60,000/year, payback in four months.		

BWMP-24	Monitoring of chemical consumption in processes
Category	Pollution reduction
Description	
In some production units, chemicals are added in process vessels without being properly measured. Estimated quantities of chemicals are added based on judgment which results in excessive use of chemicals. This not only increases production cost but also increases the wastewater pollution load. Workers should add chemicals after exact measurement and calibrated jugs/mugs or weighing scales can be used to do so.	

Investment	PKR 5,000-10,000	
Benefits		
PKR 10,000-20,000/year, payback in six months.		

BWMP-25	Storage of chemicals with catch pans
Category	Pollution reduction
Description	
Generally chemical containers are not stored with any catch pans. In the event of a leak or spill chemicals are washed away in the wastewater drain, adding to pollution. Catch pans should be placed over chemical containers and their volume should be 110 per cent of the volume of the container placed in it.	
Investment	PKR 50,000-200,000
Benefits	

PKR 55,000-220,000/year, payback in 11 months.

BWMP-26	Proper disposal of solid was
Category	Pollution reduction
Description	
	etimes dumped in wastewater osed off in appropriate sites.
Investment	PKR 10,000-50,000
Benefits	
Pollution reduction	, less pollution load on waste
BWMP-27	Installation of automatic shu
Category	Water management
Description	 achines is usually not synchror
	n machines have switched off,
0	omatic shut off valves which a
Investment	PKR 500,000-1,000,000
Benefits	
	,000/year, payback in 36 mo
	, , , , ,
BWMP-28	Disposal of boiler ash in dry
Category	Water management, pollutic
Description	
	units wash fly ash from solid fu
	wastage and increase in waste osed off in appropriate dispose
Investment	PKR 300,000-3,000,000
Benefits	
PKR 100,000-1,0	00,000/year, payback in 36 r
	Installation of temperature c
BWMP-29	Energy conservation
Category Description	Lifergy conservation
	l nnot be reduced unless it is m
	ollers allow energy supply to b
consumption in va	
Investment	PKR 400,000-600,000
Benefits	
	,000/year, payback in 18 mo
	extile Sector Training Manual

ste

r drain lines which cause pollution. Solid waste should be

ewater treatment plant, and NEQS compliance.

ut off valve in machines

onized with its operation. When machines stop, Water remains , adding to water wastage. Machines should therefore be allow water to be supplied only when machines are operating.

on ths.

y state

ion reduction

uel boilers in drains with large quantities of washing water. tewater pollution. Ash should be collected from scrubbers and sal sites instead of being washed with water in drains.

months.

controllers, steam flow meters to control energy supply

monitored and control equipment is installed in machines. be managed and steam flow meters help in managing steam

onths.

BWMP-30	Installation of energy efficient motors
Category	Energy conservation
Description	
Old, standard and inefficient motors waste a lot of energy. Inefficient motors should be replaced with ener efficient motors to reduce energy consumption.	
Investment	PKR 1,000,000-2,000,000
Benefits	
DKD 025 000 1 850 000 (users as the duite 12 as at the	

PKR 925,000-1,850,000/year, payback in 13 months.

BWMP-31	Installation of efficient water turbine
Category	Energy conservation
Description	
Generally water turbines are inefficient and waste a lot of energy. To reduce energy consumption they should be replaced with efficient turbines.	
Investment	PKR 200,000-300,000
Benefits	

BWMP-32	Preheating of process streams with flue gases of generator/oil heaters exhausts	
Category	Energy conservation	
Description		
Generator exhaust gases are emitted at high temperatures of around 500°C. Process water streams can be preheated through these flue gases by installing heat exchangers in exhausts.		
Investment	PKR 1,000,000-2,000,000	
Benefits		
PKR 1,000,000-2,000,000/year, payback in 12 months.		

BWMP-33	Inverters on motors	
Category	Energy conservation	
Description		
Inverters should be installed on motors with fluctuating loads for controlled energy consumption.		
Investment	PKR 200,000-400,000	
Benefits		
PKR 200,000-400,000/year, payback in 12 months.		

BWMP-34	Use of treated water in processes	
Category	Pollution reduction	
Description		
Use of untreated water leads to excessive use of chemicals in processes with poor quality product quality. Water should be treated with RO and softener and then used in processes to reduce chemical consumption and wastewater pollution load.		
Investment	PKR 1,000,000-2,000,000	
Benefits		
PKR 500,000-1,000,000/year, payback in 24 months.		

BWMP-35	Automatic chemical dispens
Category	Pollution reduction
Description	
•	chemicals allow excessive us
	ter pollution load. Automatic
in process recipes.	
Investment	PKR 2,000,000-3,000,000
Benefits	
PKR 650,000-1,00	0,000/year, payback in 36 i
BWMP-36	Less bleaching of fabrics in
Category	Pollution Reduction
Description	
,	d in dark shades should not
	nption but also reduce polluti
Investment	
Benefits	
	000/voor
PKR 50,000 - 120	,000/year
PKR 50,000 - 120	,000/ year
	,
BWMP-37	Installation of caustic recover
BWMP-37 Category	Installation of caustic recover Pollution reduction
BWMP-37 Category Description	Installation of caustic recover Pollution reduction
BWMP-37 Category Description Mercerization wast	Installation of caustic recover
BWMP-37 Category Description Mercerization wast	Installation of caustic recover Pollution reduction ewater with some caustic con more concentrated and incre
BWMP-37 Category Description Mercerization wast makes the solution reused in the merce	Installation of caustic recover Pollution reduction ewater with some caustic con more concentrated and incre
BWMP-37 Category Description Mercerization wast makes the solution reused in the merce Investment	Installation of caustic recover Pollution reduction ewater with some caustic con more concentrated and incre erization process.
BWMP-37 Category Description Mercerization wast makes the solution reused in the merce Investment Benefits	Installation of caustic recover Pollution reduction ewater with some caustic con more concentrated and incre erization process.
BWMP-37 Category Description Mercerization wast makes the solution reused in the merce Investment Benefits	Installation of caustic recover Pollution reduction ewater with some caustic con more concentrated and incre erization process. PKR 3,000,000 – 4,000,00
BWMP-37 Category Description Mercerization wast makes the solution reused in the merce Investment Benefits PKR 3,000,000 – 4	Installation of caustic recover Pollution reduction ewater with some caustic con more concentrated and incre erization process. PKR 3,000,000 – 4,000,00 4,000,000 /year, payback in
BWMP-37 Category Description Mercerization wast makes the solution reused in the merce Investment Benefits PKR 3,000,000 – 4 BWMP-38	Installation of caustic recover Pollution reduction ewater with some caustic con more concentrated and incre erization process. PKR 3,000,000 – 4,000,00 4,000,000 /year, payback in Establishing laboratory
BWMP-37 Category Description Mercerization wast makes the solution reused in the merce Investment Benefits PKR 3,000,000 – 4 BWMP-38 Category	Installation of caustic recover Pollution reduction ewater with some caustic con more concentrated and incre erization process. PKR 3,000,000 – 4,000,00 4,000,000 /year, payback in
BWMP-37 Category Description Mercerization wast makes the solution reused in the merce Investment Benefits PKR 3,000,000 – 4 BWMP-38 Category Description	Installation of caustic recover Pollution reduction ewater with some caustic con more concentrated and incre erization process. PKR 3,000,000 – 4,000,00 4,000,000 /year, payback in Establishing laboratory Pollution reduction
BWMP-37 Category Description Mercerization wast makes the solution reused in the merce Investment Benefits PKR 3,000,000 – 4 BWMP-38 Category Description Impure chemicals of	Installation of caustic recover Pollution reduction ewater with some caustic con more concentrated and incre erization process. PKR 3,000,000 – 4,000,00 4,000,000 /year, payback in Establishing laboratory Pollution reduction
BWMP-37 Category Description Mercerization wast makes the solution reused in the merce Investment Benefits PKR 3,000,000 – 4 BWMP-38 Category Description Impure chemicals of a laboratory to and	Installation of caustic recover Pollution reduction ewater with some caustic con more concentrated and incre erization process. PKR 3,000,000 – 4,000,00 4,000,000 /year, payback in Establishing laboratory Pollution reduction are used more regularly and alyze incoming chemicals with
BWMP-37 Category Description Mercerization wast makes the solution reused in the merce Investment Benefits PKR 3,000,000 – 4 BWMP-38 Category Description Impure chemicals of a laboratory to and	Installation of caustic recover Pollution reduction ewater with some caustic con- more concentrated and incre- erization process. PKR 3,000,000 – 4,000,00 4,000,000 /year, payback in Establishing laboratory Pollution reduction are used more regularly and alyze incoming chemicals with npure chemicals should be d
BWMP-37 Category Description Mercerization wast makes the solution reused in the merce Investment Benefits PKR 3,000,000 – 4 BWMP-38 Category Description Impure chemicals of a laboratory to and in processes and ir and also wastewat	Installation of caustic recover Pollution reduction ewater with some caustic con- more concentrated and incre- erization process. PKR 3,000,000 – 4,000,00 4,000,000 /year, payback in Establishing laboratory Pollution reduction are used more regularly and alyze incoming chemicals with npure chemicals should be d
BWMP-37 Category Description Mercerization wast makes the solution reused in the merce Investment Benefits PKR 3,000,000 – 4 BWMP-38 Category Description Impure chemicals of a laboratory to and in processes and ir	Installation of caustic recover Pollution reduction ewater with some caustic com more concentrated and incre erization process. PKR 3,000,000 – 4,000,00 4,000,000 /year, payback in Establishing laboratory Pollution reduction are used more regularly and alyze incoming chemicals with npure chemicals should be d er pollution load.
BWMP-37 Category Description Mercerization wast makes the solution reused in the merce Investment Benefits PKR 3,000,000 – 4 BWMP-38 Category Description Impure chemicals of a laboratory to and in processes and ir and also wastewat	Installation of caustic recover Pollution reduction ewater with some caustic comore concentrated and incertization process. PKR 3,000,000 – 4,000,0 4,000,000 /year, payback in Establishing laboratory Pollution reduction are used more regularly and alyze incoming chemicals with npure chemicals should be deter pollution load.

ising system

use of chemicals which ultimately causes resource loss and c chemical dispensing systems allow controlled use of chemicals

months.

dark shades

t be bleached extensively. This will not only reduce chemical ition load generated by the process.

very plant

ontents (5-8 Be°), is carried to the caustic recovery plant which reases caustic content. This concentrated caustic soda can be

000

12 months.

increase wastewater pollution. Management should establish ith respect to their purity. Only pure chemicals should be used discarded. Use of pure chemicals will reduce production cost

nonths.

BWMP-39	Use of nozzles in water hoses to clean printing machine screens
Category	Water management
Description	
Water hoses used for cleaning printing machine screens do not have nozzles which results in the use of large quantities of water. It also does not effectively wash screens. Proper sized nozzles should be installed in water hoses to reduce water consumption and for effective and targeted cleaning of screens.	

Investment	PKR 10,000-15,000
Benefits	
PKR 15,000-25,000/year, payback in eight months.	

BWMP-40	Reuse of process washes containing low percentage of chemicals to make chemical solutions			
Category	Water management and pollution reduction			
Description	iption			
Wastewater of certain processes like bleaching, scouring and mercerization wastewater contains low concentrations of chemicals. These water streams can be used as solvents to make chemical baths. This practice will save water as well as chemicals and reduce wastewater pollution.				
Investment	PKR 100,000-250,000			
Benefits				

PKR 245,00-610,000/year, payback in five months.

BWMP-41	Avoid disposing of pigments and dyes in drains		
Category	Pollution reduction		
Description			
To reduce wastewo or disposed off in t	ater pollution collection and residual printing paste pumps to should be reused in processes their dry state.		
Investment	PKR 25,000-50,000		
Benefits			
PKR 35,000-65,00	PKR 35,000-65,000/year, payback in nine months.		

BWMP-42	Installation of washing machine for printing machine screens	
Category	Water management	
Description		
Printing machine screens are washed manually with water hoses, which consumes a lot of water and are an ineffective way of cleaning screens. Washing machines are an efficient way of washing screens with less water		
Investment	PKR 60,000-70,000	
Benefits		

PKR 30,000-35,000/year, payback in 24 months.

Textile	Sector	Business	Cases
---------	--------	----------	-------

Business Case Scenario-01: Frequently Implemented with Very High Payback Periods (Textile Sector)

#	Business Priority-01 Solution Options	Financial Overview		
		Investment (PKR 000)	Saving (PKR 000/yr)	Simple Payback (months)
	Water management			
1	Leakage control, maintenance of pipelines, piping improvement.	10-100	20-200	6
2	Collection and reuse of cooling water from singeing, compressors, therm oil heaters, chillers, cooling drums, caustic recovery plant etc in processes.	15-100	30-200	6
3	Reuse of RO rejected water/softener regeneration water for showering at boiler wet scrubber/cyclones or in the process where high quality water is not required.	30-60	60-120	6
4	Use of reduced sized diameter pipes for water use.	20-100	30-150	8
5	Implementing water showering of fabrics in rope and jigger machines for effective washing, with optimum water consumption.	5-50	6-60	10
6	Use of wastewater instead of freshwater in boiler wet scrubber and for cleaning of wastewater mechanical screens.	25-100	30-120	10
7	Control of floor and other washing points.	10-50	12-60	10
8	Use of nozzles in water hoses to clean printing machine screens.	10-15	15-25	8
9	Installation of water trigger nozzles in water hoses.	10-15	15-25	8
10	Reuse of process washes of one process as washing water for other processes.	20-100	25-125	10
11	Collection and reuse of blanket washing water., Synchronized blanket washing with printing machine movement to avoid water wastage during machine shut off.	15-50	25-85	7
12	Installation of automatic level control switches in water storage tanks.	10-50	11-55	11
13	Installation of water flow meters.	10-200	11-220	11
14	Collection and reuse of soaper wastewater for washing pigment drums and colour kitchen floor cleaning.	50-100	60-120	10
15	Use of dry cleaning methods to clean wet floors contaminated with chemicals.	5-10	6-11	11
	Energy Conservation			
16	Change existing machines to countercurrent mode to reduce energy and water consumption.	10-75	12-90	10

Textile Sector Training Manual

		· · · · · · · · · · · · · · · · · · ·		
17	Installation of temperature and pressure gauges in process vessels.	5-50	6-60	10
18	Monitoring and evaluation of motor performance and improve system accordingly (loading adjustment, replacing over/under sized motors).	50-300	75-450	8
19	Use of high quality copper wires for rewinding of motors.	50-200	55-220	11
20	Keep record of motors rewinding and replace motors after three to four times of rewinding.	100-200	120-240	10
21	Collection and reuse of steam condensate as boiler feed water.	100-150	625-1,200	2
22	Conduct boiler blow down after measuring TDS levels in boiler water.	10-20	30-60	4
	Wastewater Pollution Reduction			
23	Reuse of process washes containing low content of chemicals to make chemical solutions.	100-250	245-610	5
24	Collection of residual printing paste from pigment drums and pumps to use in the process again or disposing it off in dry state.	25-50	35-65	9
25	Monitoring chemical consumption in process recipes (use of calibrated beakers for chemical dosing).	5-10	10-20	6
26	Less bleaching of fabrics which undergo black or dark shaded dyeing.	-	50-120	-
27	Chemical storage with catch pans underneath to collect leaks and spills.	50-200	55-220	11
28	Collect and dispose solid waste in appropriate dumping site instead of disposal in wastewater drains.	10-50	-	-
	Total	760-2,655	1,674-4,931	5-6

The textile processing sector's first priority set of BWMPs implementation makes a very good business case. An investment in the range of PKR 0.8-2.6 million, depending upon the size of a production unit, and pays back in less than a year with annual benefits of PKR 1.7-4.9 million, in terms of water conservation (5-30%), chemical savings, energy efficiency (5-10%) and pollution reduction (10-30%).

Business Case Scenario-02: Important with Moderate to High Payback Periods (Textile Sector)

#	Solution Options	Financial Overview		
		Investment (PKR 000)	Saving (PKR 000/yr)	Simple Payback
	Water management			
1	Conduct training of workers and managers on water conservation, energy efficiency and pollution reduction aspects.	200-300	-	-
2	Installation of automatic water shut off valves in machines.	500-1,000	165-330	36
3	Installation of washing machine for printing machine screens.	60-70	30-35	24
4	Disposal of boiler ash in dry state instead of washing it in the drain with water.	300-3,000	100-1,000	36
	Energy Conservation			
5	Installation of temperature controllers, steam flow meters etc.	400-600	265-400	18
6	Installation of energy efficient motors.	1,000-2,000	925-1,850	13
7	Installation of efficient water turbines.	200-300	160-240	15
8	Installation of efficient steam and condensate recovery system.	1,000-3,000	800-2,400	15
9	Installation of heat exchangers in hot wastewater streams.	500-750	500-750	12
10	Preheating of process streams with flue gases of generators/oil heater exhaust.	1,000-2,000	1,000-2,000	12
11	Inverters on motors.	200-400	200-400	12
	Wastewater Pollution Reduction			
12	Installation of caustic recovery plant.	3,000-4,000	3,000-4,000	12
13	Use of treated water with RO/softener in processes.	1,000-2,000	500-1,000	24
14	Automatic chemical dispensing system.	2,000-3,000	650-1,000	36
15	Establishing laboratory to monitor chemical purity.	500-1,000	160-350	36
16	Disposal of boiler ash in dry state instead of washing with water in drain.	-	-	-
	Total	11,860-23,420	8,455-15,755	17-18

The second priority set of BWMP implementation in the textile processing sector also has a very clear business case. An investment in the range of PKR 11.8-23.4 million, depending upon the size of the industry, pays back in less than two year with annual benefits of PKR 8.5-15.8 million, in terms of water conservation (5-30%), chemical savings, energy efficiency (5-10%) and pollution reduction (10-30%).

Case Study

Abdul Rehman Corporation (ARC) Pvt. Ltd implemented the following BWMPs:

Abdul Rehman Corporation (ARC) Pvt. Ltd. is a progressive textile industry. As a part of the WSP project, a production unit of ARC was audited and some recommendations were shared with the management. In addition, on-the-job and workshop trainings were offered to staff and professionals. A number of recommendations were given to ARC such as:

- Recycling of rotary blanket wash waterWater showering in rope washing machine
- Reuse of RO rejected water for flushing and cleaning
- Reuse of singeing machine's cooling water
- Use of water trigger nozzles at washing points
- Installation of heat exchanger at soaper washing machine

After the implementation of these BWMPs the unit was able to achieve significant economic and environmental gains as below.

Water Conservation	211,000 m³/yr
Investment	PKR 0.953 Million
Annual Saving (water & energy)	PKR 2.64 Million

